

Enhancing Predictions: A Comparative Study of Machine Learning Models and Classical Methods

dsk.2024, Nov. 8th, Sune Petersen

@PKelco Unlocking Nature-Powered Success®

A HUBER COMPANY

©2024 One or more of CP Kelco U.S., Inc. or CP Kelco ApS. All Rights Reserved.

t: +45 5616 5858 e: sune.petersen@cpkelco.com

Outline

- About CP Kelco
- Raw data used for training
- Machine Learning Apps and models tested
- Data structure and pre-processing
- Regression Learner App results
- PLS Toolbox App results
- What is XGB?
- Learnings and next step
- Questions?

About CP Kelco

CP Kelco is a leading global producer and innovator of nature-based specialty ingredients made from:

Gellan gun entation Derived Cellulose Carrageenan Diutan g

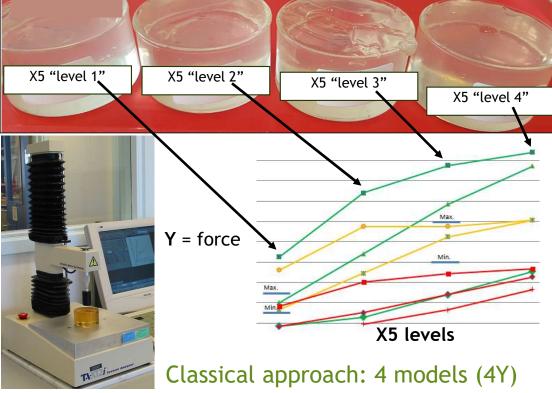
Extensive portfolio of versatile, high-performance solutions.

Industry renowned technical support, quality and safety standards.

Decades of Industry and Product Experience

CO Unlocking Nature-Powered Success® A HURER COMPANY

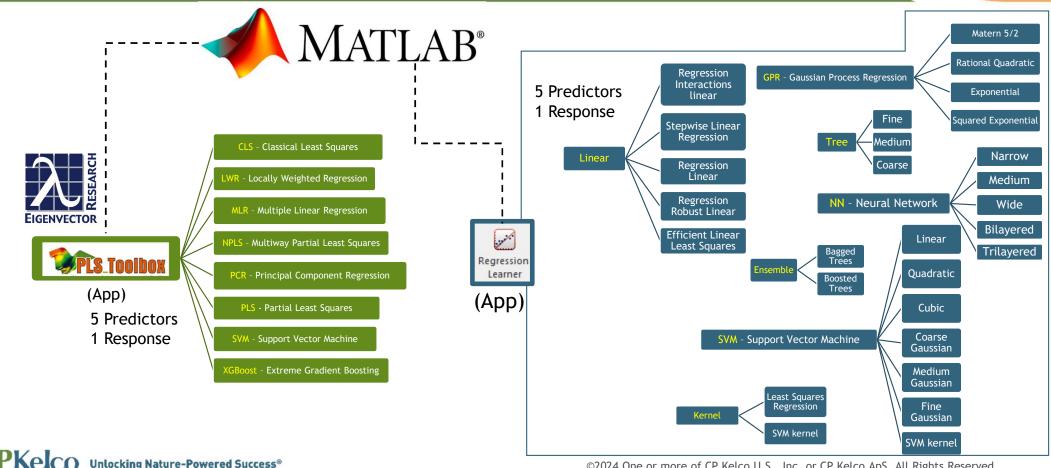
Modeling from QC data (gel application)



Measurements on sample: X1, X2 = fast = every day! X3 = slow = not measured daily

<u>QC - gel test system:</u> X4 = test system (3 to choose from) X5 = 4 levels of a gel-component —

Test gel



New approach: 1 model?? (1Y)

Unlocking Nature-Powered Success®

X = predictor(s), Y = response(s)

Machine Learning Apps and regression models tested

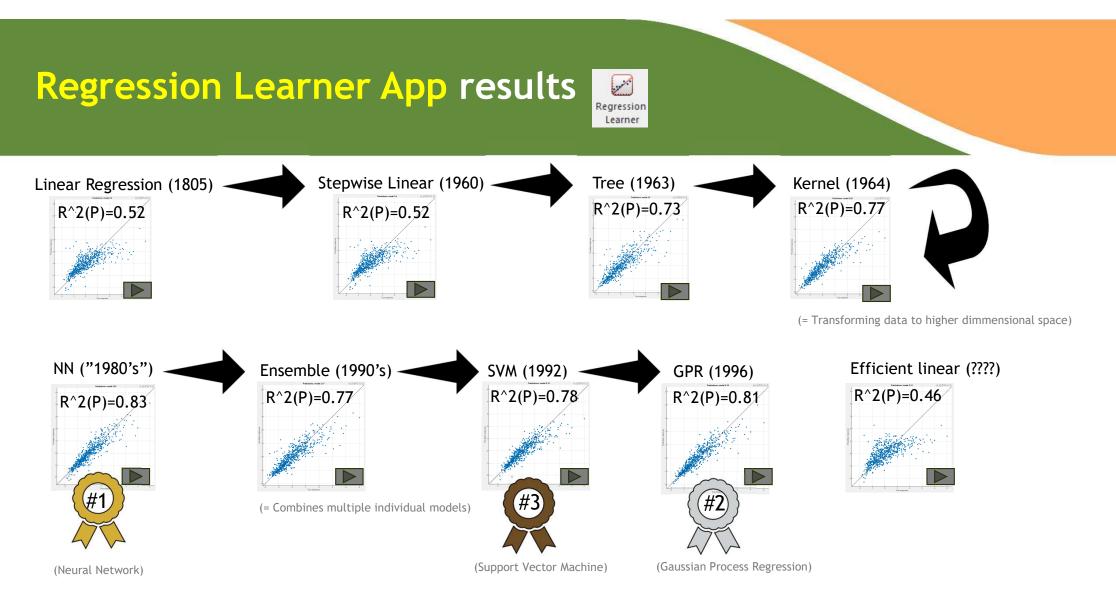
MatLab® is a trademark of The MathWorks, Inc.

A HUBER COMPANY

Data structure and pre-processing

Data

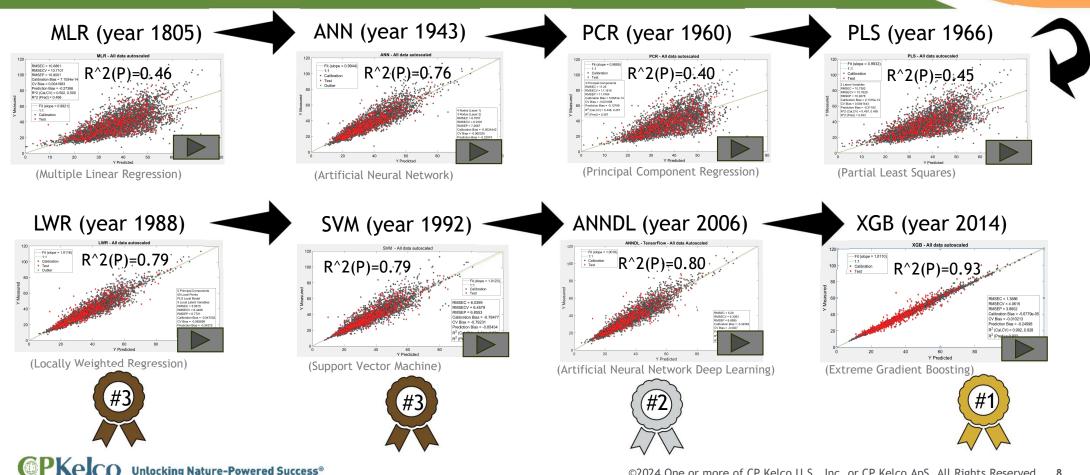
- **5 Discrete Predictors** (X1, X2, X3, X4, and X5) + **1 Response** (Force)
- No "Outliers" removed!


Pre-processing

• Data was Autoscaled prior to training and testing

 All gel-test measurements (= X and Y data set) were randomized before splitting into 85% for training/cross validation (= 3584 gel-test measurements) 15% for testing (633 gel-test measurements)

COPKEICO Unlocking Nature-Powered Success®



R²(P)= "prediction power on new data <u>after</u> model training"

PLS Toolbox App results

A HUBER COMPANY

R²(P)= "prediction power on new data after model training"

About XGB

What is XGB?

Extreme Gradient Boosting, commonly known as **XGBoost (XGB**), is a **powerful machine learning algorithm** that has **gained popularity for its efficiency and performance** in predictive modeling tasks.

How XGBoost Works

- <u>Boosting Technique</u>: XGBoost is based on the boosting technique, where multiple weak learners (usually decision trees) are combined to form a strong learner. Each new tree corrects the errors made by the previous trees.
- 2. <u>Gradient Descent</u>: It uses gradient descent to minimize the loss function. The algorithm **iteratively adds trees to the model**, each one aiming **to reduce the residual errors of the previous trees**.
- 3. <u>Regularization</u>: XGBoost includes regularization terms in its objective function to **prevent overfitting**. This makes it **more robust compared to other boosting algorithms**.
- 4. <u>Parallel Processing</u>: It supports parallel processing, which speeds up the training process significantly.
- **5. <u>Handling Missing Values</u>**: XGBoost can handle missing values internally, making it more versatile for real-world data.

Pros

- •High Performance: XGBoost often outperforms other algorithms in terms of accuracy and speed.
- •Flexibility: It can be used for both classification and regression tasks.
- •**Feature Importance**: Provides **insights into feature importance**, helping in feature selection.
- •<u>Scalability</u>: Efficiently handles large datasets and can be distributed across clusters.
- •**Regularization**: Built-in regularization helps in **preventing overfitting**.

Cons

- •**Complexity**: The algorithm can be complex to tune due to the large number of hyperparameters.
- •**Computationally Intensive**: Despite its efficiency, it can still be computationally intensive, especially for very large datasets.
- •**Interpretability**: Models can be less interpretable compared to simpler algorithms like linear regression or decision trees.

Conclusion and next step

- Be creative with your data and how you use them (5X+1Y vs. 4X+4Y)
- Test many different models to increase chances to get Great prediction power!
- Build fewer but more flexible models if possible (vs. interpolation / maintenance)
- XGB (Extreme Gradient Boosting) is an interesting option for complex data!

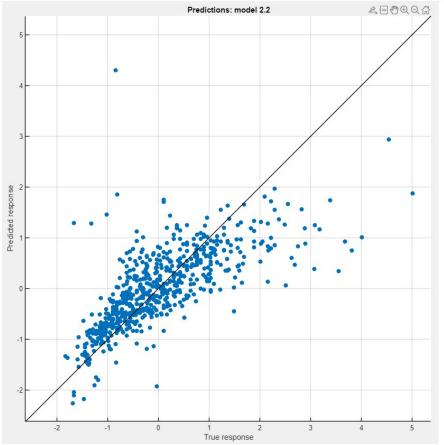
• Next Step: Try XGB-prediction from only spectral X-predictors (= "instant predictions")

Many thanks $A \otimes$ Now time for Questions...

Experiences with XGB?

Other ideas/models to try out?

Other input/feedback?



Thanks for your attention!

Linear Regression (1805)

2.2 Linear Regression

Model 2.2: Linear Regression Status: Tested

Training Results

RMSE (Validation)	0.63596
R-Squared (Validation)	0.59
MSE (Validation)	0.40444
MAE (Validation)	0.45746
MAPE (Validation)	167.9%
Prediction speed	~100000 obs/sec
Training time	9.2049 sec
Model size (Compact)	~12 kB

Test Results

 RMSE (Test)
 0.72135

 R-Squared (Test)
 0.52

 MSE (Test)
 0.52034

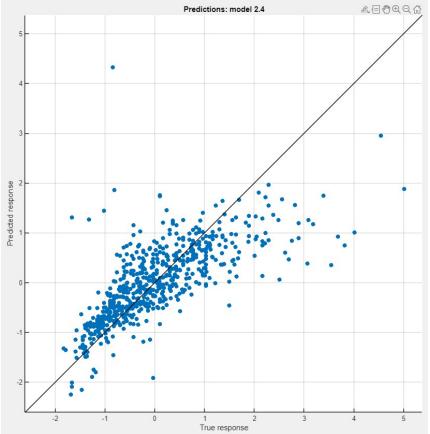
 MAE (Test)
 0.49084

 MAPE (Test)
 163.6%

Model Hyperparameters

Preset: Interactions Linear Terms: Interactions Robust option: Off

- Feature Selection: 5/5 individual features selected
- PCA: Disabled
- Optimizer: Not applicable



^{©2024} One or more of CP Kelco U.S., Inc. or CP Kelco ApS. All Rights Reserved. 13

Stepwise Linear (1960)

2.4 Stepwise Linear Regression Last change: Stepwise Linear

Model 2.4: Stepwise Linear Regression Status: Tested

Training Results

 RMSE (Validation)
 0.63507

 R-Squared (Validation)
 0.59

 MSE (Validation)
 0.40331

 MAE (Validation)
 0.45741

 MAPE (Validation)
 168.0%

 Prediction speed
 ~100000 obs/sec

 Training time
 11.004 sec

 Model size (Compact)
 ~12 kB

Test Results

 RMSE (Test)
 0.72157

 R-Squared (Test)
 0.52

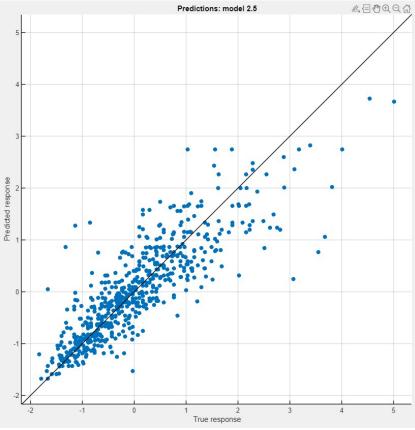
 MSE (Test)
 0.52067

 MAE (Test)
 0.49105

 MAPE (Test)
 163.5%

Model Hyperparameters

Preset: Stepwise Linear Initial terms: Linear Upper bound on terms: Interactions Maximum number of steps: 1000


- > Feature Selection: 5/5 individual features selected
- PCA: Disabled
- Optimizer: Not applicable

Tree (1963)

2.5 Tree Last change: Fine Tree

Model 2.5: Tree Status: Tested

Training Results

 RMSE (Validation)
 0.53499

 R-Squared (Validation)
 0.71

 MSE (Validation)
 0.28621

 MAE (Validation)
 0.37970

 MAPE (Validation)
 159.8%

 Prediction speed
 ~130000 obs/sec

 Training time
 12.949 sec

 Model size (Compact)
 ~148 kB

Test Results

 RMSE (Test)
 0.54773

 R-Squared (Test)
 0.73

 MSE (Test)
 0.30001

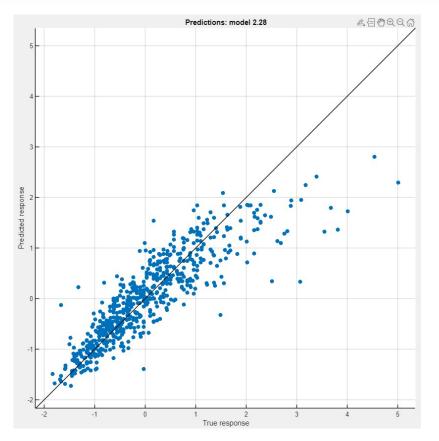
 MAE (Test)
 0.37929

 MAPE (Test)
 137.2%

Model Hyperparameters

Preset: Fine Tree Minimum leaf size: 4 Surrogate decision splits: Off

Feature Selection: 5/5 individual features selected


- PCA: Disabled
- Optimizer: Not applicable

Kernel (1964)

2.28 Kernel Last change: Least Squares Regression Kernel

Model 2.28: Kernel Status: Tested

Training Results

 RMSE (Validation)
 0.46964

 R-Squared (Validation)
 0.78

 MSE (Validation)
 0.22056

 MAE (Validation)
 0.33827

 MAPE (Validation)
 140.4%

 Prediction speed
 ~110000 obs/sec

 Training time
 667.21 sec

 Model size (Compact)
 ~10 kB

Test Results

 RMSE (Test)
 0.50224

 R-Squared (Test)
 0.77

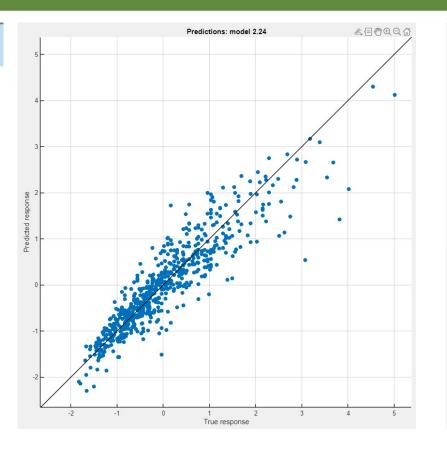
 MSE (Test)
 0.25224

 MAE (Test)
 0.35226

 MAPE (Test)
 138.9%

Model Hyperparameters

Preset: Least Squares Regression Kernel Learner: Least Squares Kernel Number of expansion dimensions: Auto Regularization strength (Lambda): Auto Kernel scale: Auto Standardize data: Yes Iteration limit: 1000


- > Feature Selection: 5/5 individual features selected
- PCA: Disabled
- Optimizer: Not applicable

<u>NN ("1980's")</u>

2.24 Neural Network
Last change: Wide Neural Network

Model 2.24: Neural Network Status: Tested

Training Results

 RMSE (Validation)
 0.42570

 R-Squared (Validation)
 0.82

 MSE (Validation)
 0.18122

 MAE (Validation)
 0.30569

 MAPE (Validation)
 126.2%

 Prediction speed
 ~190000 obs/sec

 Training time
 646.51 sec

 Model size (Compact)
 ~11 kB

Test Results

 RMSE (Test)
 0.43306

 R-Squared (Test)
 0.83

 MSE (Test)
 0.18754

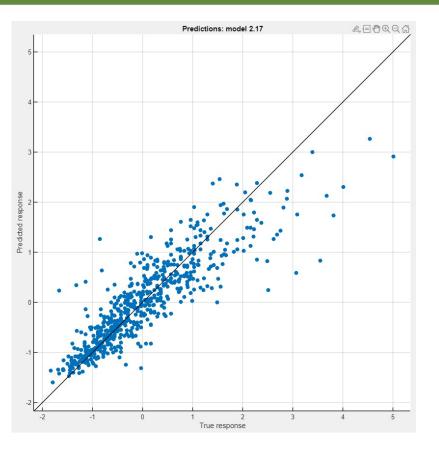
 MAE (Test)
 0.30892

 MAPE (Test)
 131.2%

Model Hyperparameters

Preset: Wide Neural Network Number of fully connected layers: 1 First layer size: 100 Activation: ReLU Iteration limit: 1000 Regularization strength (Lambda): 0 Standardize data: Yes

Feature Selection: 5/5 individual features selected


- PCA: Disabled
- Optimizer: Not applicable

Ensemble (1990's)

Model 2.17: Ensemble Status: Tested

Training Results

 RMSE (Validation)
 0.46659

 R-Squared (Validation)
 0.78

 MSE (Validation)
 0.21771

 MAE (Validation)
 0.33402

 MAPE (Validation)
 134.9%

 Prediction speed
 ~20000 obs/sec

 Training time
 53.499 sec

 Model size (Compact)
 ~2 MB

Test Results

 RMSE (Test)
 0.50089

 R-Squared (Test)
 0.77

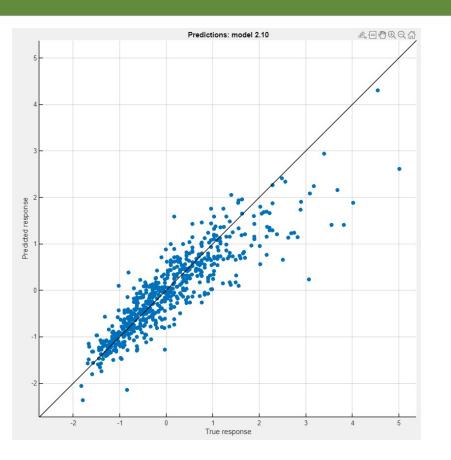
 MSE (Test)
 0.25089

 MAE (Test)
 0.34581

 MAPE (Test)
 139.1%

Model Hyperparameters

Preset: Bagged Trees Minimum leaf size: 8 Number of learners: 30 Number of predictors to sample: Select All


- Feature Selection: 5/5 individual features selected
- PCA: Disabled
- Optimizer: Not applicable

COPKEICO Unlocking Nature-Powered Success®

SVM (1992)

2.10 SVM Last change: Cubic SVM

Model 2.10: SVM Status: Tested

Training Results

 RMSE (Validation)
 0.46295

 R-Squared (Validation)
 0.78

 MSE (Validation)
 0.21432

 MAE (Validation)
 0.32091

 MAPE (Validation)
 132.8%

 Prediction speed
 ~89000 obs/sec

 Training time
 38.906 sec

 Model size (Compact)
 ~133 kB

Test Results

 RMSE (Test)
 0.48762

 R-Squared (Test)
 0.78

 MSE (Test)
 0.23777

 MAE (Test)
 0.33717

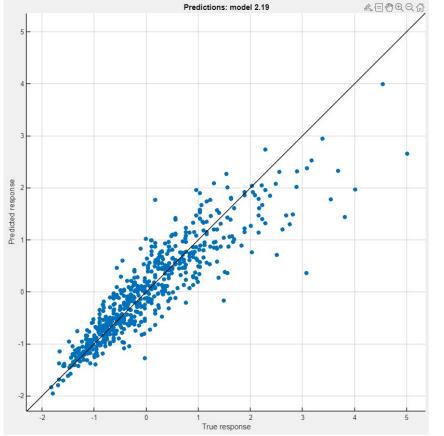
 MAPE (Test)
 125.4%

Model Hyperparameters

Preset: Cubic SVM Kernel function: Cubic Kernel scale: Automatic Box constraint: Automatic Epsilon: Auto Standardize data: Yes

> Feature Selection: 5/5 individual features selected

PCA: Disabled


Optimizer: Not applicable

A HUBER COMPANY Unlocking Nature-Powered Success®

GPR (1996)

2.19 Gaussian Process Regression Last change: Matern 5/2 GPR

Model 2.19: Gaussian Process Regression Status: Tested

Training Results

RMSE (Validation)	0.42413
R-Squared (Validation)	0.82
MSE (Validation)	0.17989
MAE (Validation)	0.29945
MAPE (Validation)	132.1%
Prediction speed	~18000 obs/sec
Training time	253.48 sec
Model size (Compact)	~181 kB

Test Results

 RMSE (Test)
 0.45062

 R-Squared (Test)
 0.81

 MSE (Test)
 0.20306

 MAE (Test)
 0.31148

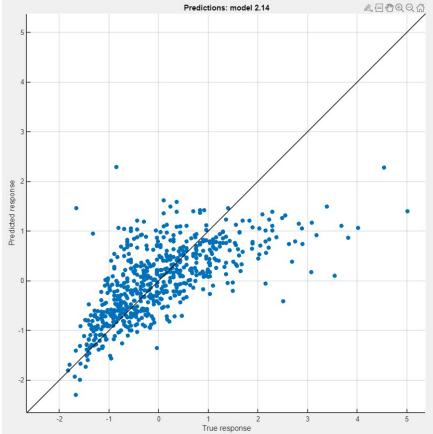
 MAPE (Test)
 131.4%

Model Hyperparameters

Preset: Matern 5/2 GPR Basis function: Constant Kernel function: Matern 5/2 Use isotropic kernel: Yes Kernel scale: Automatic Signal standard deviation: Automatic Sigma: Automatic Standardize data: Yes Optimize numeric parameters: Yes

Feature Selection: 5/5 individual features selected

PCA: Disabled


Optimizer: Not applicable

COPKEICO Unlocking Nature-Powered Success®

Efficient linear (????)

2.14 Efficient Linear Last change: Efficient Linear Least Squares

Model 2.14: Efficient Linear Status: Tested

Training Results

RMSE (Validation)	0.70087
R-Squared (Validation)	0.50
MSE (Validation)	0.49122
MAE (Validation)	0.52808
MAPE (Validation)	179.7%
Prediction speed	~240000 obs/sec
Training time	47.328 sec
Model size (Compact)	~11 kB

Test Results

 RMSE (Test)
 0.77095

 R-Squared (Test)
 0.46

 MSE (Test)
 0.59436

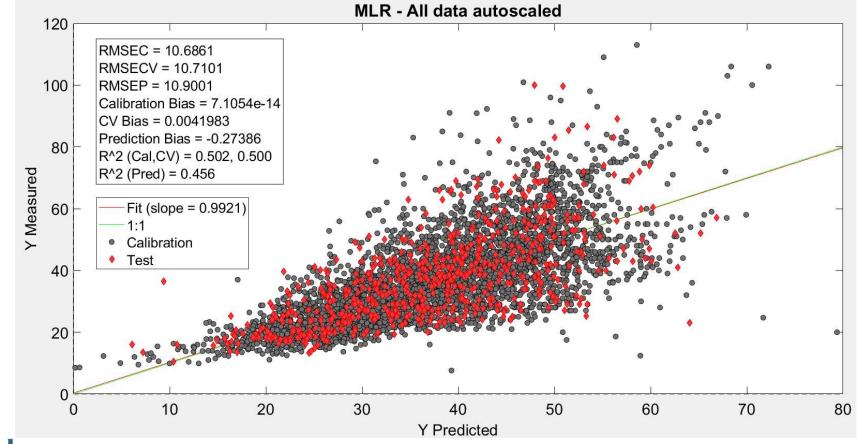
 MAE (Test)
 0.55712

 MAPE (Test)
 183.3%

Model Hyperparameters

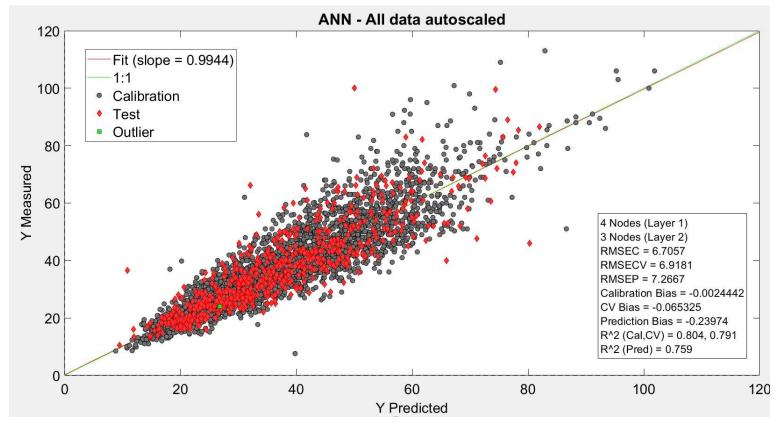
Preset: Efficient Linear Least Squares Learner: Least squares Solver: Auto Regularization: Auto Regularization strength (Lambda): Auto Relative coefficient tolerance (Beta tolerance): 0.0001

> Feature Selection: 5/5 individual features selected

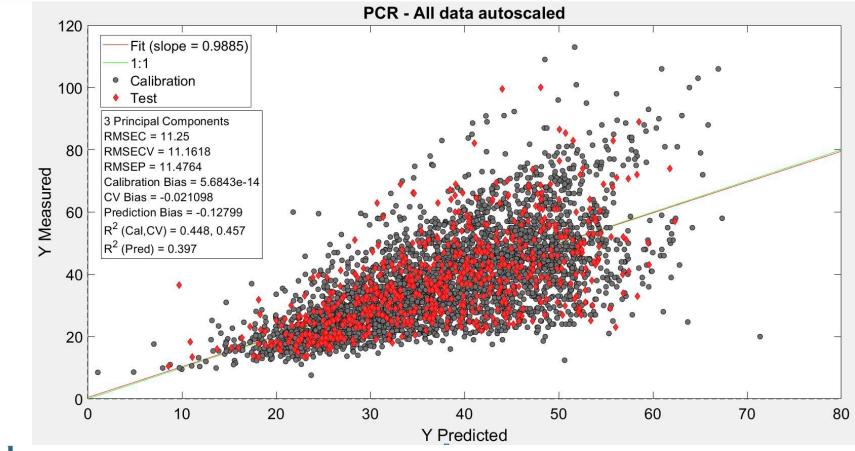

PCA: Disabled

Optimizer: Not applicable

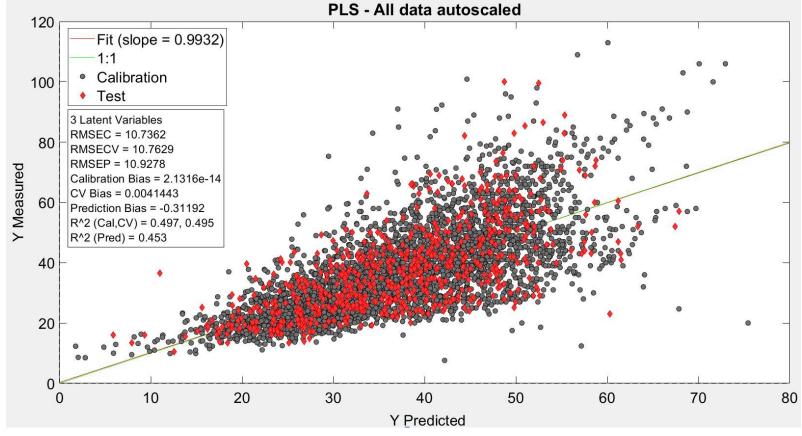
COPKEICO Unlocking Nature-Powered Success®


MLR - Multiple Linear Regression

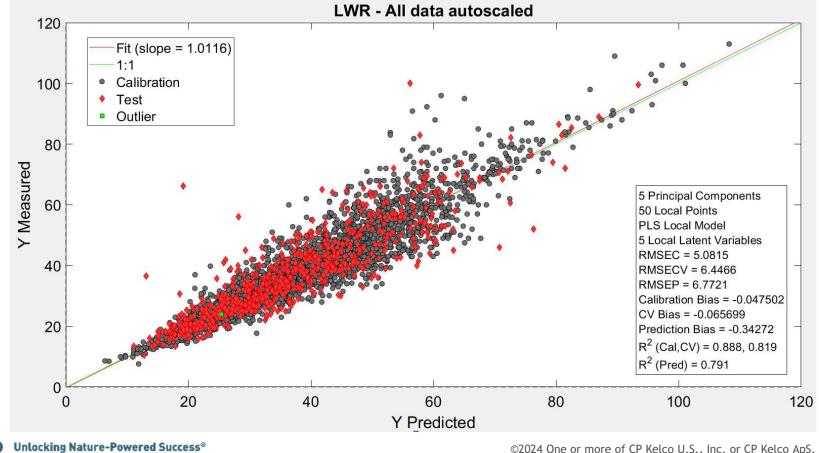
COPKELCO Unlocking Nature-Powered Success®

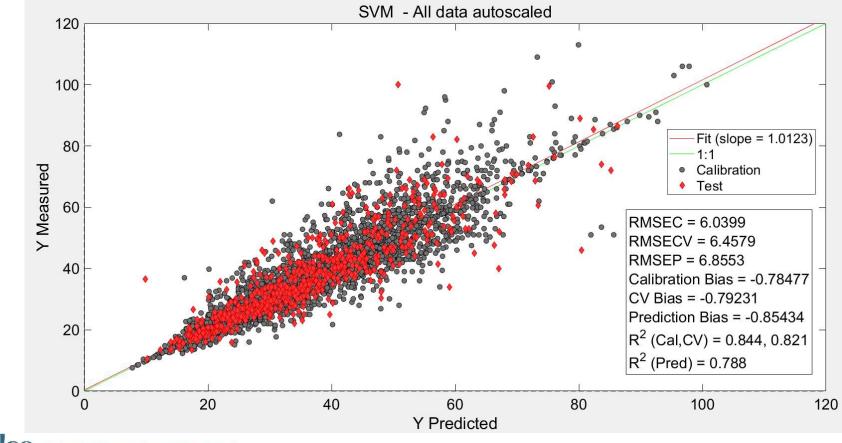

ANN - Artificial Neural Network

COPKELCO Unlocking Nature-Powered Success®

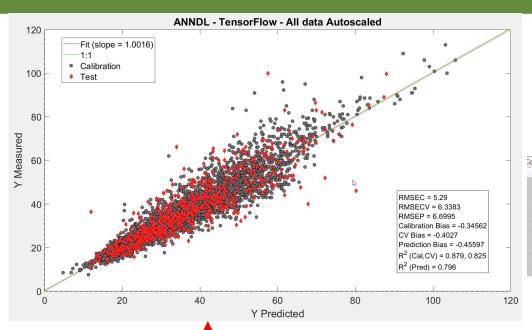

PCR - Principal Component Regression

COPKECO Unlocking Nature-Powered Success®


PLS - Partial Least Squares

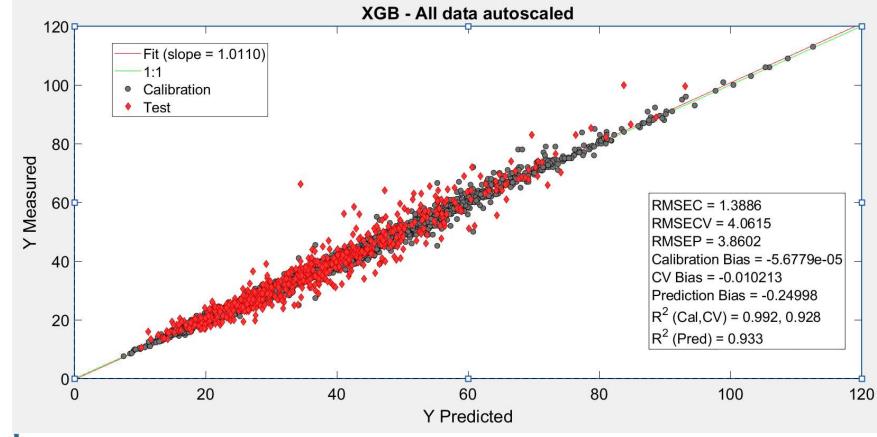

LWR - Locally Weighted Regression

A HUBER COMPANY


SVM - Support Vector Machine

COPKELCO Unlocking Nature-Powered Success®

ANNDL -Artificial Neural Network Deep Learning


del Na Sklearn Layers	Activation	RMSEC (Cal)						
101 1 yalue - (100)		I MINISLE (Cal)	RMSECV (CV)	RMSE Ratio (RMSECV/RMSEC)	R2C (Cal)	R2CV (CV)	Bias	Bias (CV)
	relu	6.441	6.699	1.04	0.8191	0.8043	-0.0461	-0.1016
del 2 value = { 100 50 };	relu	6.414	6.416	1	0.822	0.8205	0.5818	0.08236
del 3 value = { 100 50 25 };	relu	6.028	6.532	1.084	0.842	0.8143	-0.3365	-0.1483
del 4 value = { 100 50 25 10 };	relu	5.716	6.52	1.141	0.8578	0.8146	0.2035	0.05477
del 5 value = { 100 50 25 10 5 };	relu	5.806	6.418	1.105	0.8533	0.8204	-0.1505	0.001411
del 6 value = { 100 50 25 10 5 };	relu	5.276	6.504	1.233	0.8793	0.8155	0.3978	-0.04347
del 7 value = { 100 50 25 10 5 };	identity	10.74	10.8	1.006	0.4999	0.4927	-0.7275	0.0521
del 8 value = { 100 50 25 10 5 };	tanh	5.946	6.57	1.105	0.8464	0.8118	-0.3129	0.07948
tel 9 value = { 100 50 25 10 5 };	logistic	7.402	7.494	1.012	0.7621	0.7558	0.4931	-0.1123
	lel 3 value = { 100 50 25 }; lel 4 value = { 100 50 25 10 }; lel 5 value = { 100 50 25 10 5 }; lel 6 value = { 100 50 25 10 5 }; lel 6 value = { 100 50 25 10 5 }; lel 7 value = { 100 50 25 10 5 }; lel 8 value = { 100 50 25 10 5 };	lel 3 value = { 100 50 25 }; relu lel 4 value = { 100 50 25 10 }; relu lel 5 value = { 100 50 25 10 5 }; relu lel 6 value = { 100 50 25 10 5 }; relu lel 7 value = { 100 50 25 10 5 }; relu lel 7 value = { 100 50 25 10 5 }; identity lel 8 value = { 100 50 25 10 5 }; tanh	lel 3 value = { 100 50 25 }; relu 6.028 lel 4 value = { 100 50 25 10 }; relu 5.716 lel 5 value = { 100 50 25 10 5 }; relu 5.806 lel 6 value = { 100 50 25 10 5 }; relu 5.276 lel 7 value = { 100 50 25 10 5 }; relu 5.276 lel 8 value = { 100 50 25 10 5 }; identity 10.74 lel 8 value = { 100 50 25 10 5 }; tanh 5.946	lel 3 value = { 100 50 25 }; relu 6.028 6.532 lel 4 value = { 100 50 25 10 }; relu 5.716 6.52 lel 5 value = { 100 50 25 10 }; relu 5.806 6.418 lel 6 value = { 100 50 25 10 5 }; relu 5.276 6.504 lel 7 value = { 100 50 25 10 5 }; relu 5.276 6.504 lel 7 value = { 100 50 25 10 5 }; identity 10.74 10.8 lel 8 value = { 100 50 25 10 5 }; tanh 5.946 6.57	lel 3 value = { 100 50 25 }; relu 6.028 6.532 1.084 lel 4 value = { 100 50 25 10 }; relu 5.716 6.52 1.141 lel 5 value = { 100 50 25 10 5 }; relu 5.806 6.418 1.105 lel 6 value = { 100 50 25 10 5 }; relu 5.276 6.504 1.233 lel 7 value = { 100 50 25 10 5 }; identity 10.74 10.8 1.006 lel 8 value = { 100 50 25 10 5 }; tanh 5.946 6.57 1.105	lel 3 value = { 100 50 25 }; relu 6.028 6.532 1.084 0.842 lel 4 value = { 100 50 25 10 }; relu 5.716 6.52 1.141 0.8578 lel 5 value = { 100 50 25 10 5 }; relu 5.806 6.418 1.105 0.8533 lel 6 value = { 100 50 25 10 5 }; relu 5.276 6.504 1.233 0.8793 lel 7 value = { 100 50 25 10 5 }; identity 10.74 10.8 1.006 0.4999 lel 8 value = { 100 50 25 10 5 }; ianh 5.946 6.57 1.105 0.8464	lel 3 value = {100 50 25 }; relu 6.028 6.532 1.084 0.842 0.8143 lel 4 value = {100 50 25 10 }; relu 5.716 6.52 1.141 0.8578 0.8146 lel 5 value = {100 50 25 10 5}; relu 5.806 6.418 1.105 0.8533 0.8204 lel 6 value = {100 50 25 10 5}; relu 5.276 6.504 1.233 0.8793 0.8155 lel 7 value = {100 50 25 10 5}; identity 10.74 10.8 1.006 0.4999 0.4927 lel 8 value = {100 50 25 10 5}; tanh 5.946 6.57 1.105 0.8464 0.8118	lel 3 value = { 100 50 25 }; relu 6.028 6.532 1.084 0.842 0.8143 -0.3365 lel 4 value = { 100 50 25 10 }; relu 5.716 6.52 1.141 0.8578 0.8146 0.2035 lel 5 value = { 100 50 25 10 5 }; relu 5.806 6.418 1.105 0.8533 0.8204 -0.1505 lel 6 value = { 100 50 25 10 5 }; relu 5.276 6.504 1.233 0.8793 0.8155 0.3978 lel 7 value = { 100 50 25 10 5 }; identity 10.74 10.8 1.006 0.4999 0.4927 -0.7275 lel 8 value = { 100 50 25 10 5 }; tanh 5.946 6.57 1.105 0.8464 0.8118 -0.3129

Model Na.	4.		Tensorflow Layers			Activation	Optimizer	RMSEC (C.	RMSECV (.RMSE Rat	R2C (Cal)	R2CV (CV
Model 3	value{1}.type = 'Dense';value{1}.units =	= 100;value{2}.type = 'Dense';val	ue{2}.units = 50;value{2}.size = [];val	ue{3}.type = 'Dense';value{3}.units = 1	0;value{3}.size = [];	relu	adam	5.29	6.338	1.198	0.8785	0.8255
Model 2	value{1}.type = 'Dense';value{1}.units =	= 100;value{2}.type = 'Dense';val	ue{2}.units = 50;value{2}.size = [];			relu	adam	5.533	6.336	1.145	0.8674	0.825
Model 5	value{1}.type = 'Dense';value{1}.units =	= 100;value{2}.type = 'Dense';val	ue{2}.units = 50;value{2}.size = [];val	ue{3}.type = 'Dense';value{3}.units = 1	0;value{3}.size = [];	relu	adamax	5.763	6.469	1.122	0.8563	0.8177
Model 1	value{1}.type = 'Dense';value{1}.units =	= 100;				relu	adam	6.138	6.547	1.067	0.8364	0.8131
Model 7	value{1}.type = 'Dense';value{1}.units =	= 100;value{2}.type = 'Dense';val	ue{2}.units = 50;value{2}.size = [];val	ue{3}.type = 'Dense';value{3}.units = 1	0;value{3}.size = [];	relu	adam	6.325	6.982	1.104	0.8278	0.7888
Model 4	value{1}.type = 'Dense';value{1}.units =	= 100;value{2}.type = 'Dense';val	ue{2}.units = 50;value{2}.size = [];val	ue{3}.type = 'Dense';value{3}.units = 1	0;value{3}.size = [];	linear	adam	10.7	10.76	1.006	0.5015	0.4954
Model 6	value{1}.type = 'Dense';value{1}.units =	= 100;value{2}.type = 'Dense';val	ue{2}.units = 50;value{2}.size = [];val	ue{3}.type = 'Dense';value{3}.units = 1	0;value{3}.size = [];	linear	adamax	10.72	10.76	1.003	0.4984	0.4953

COPKEICO Unlocking Nature-Powered Success®

XGB - Extreme Gradient Boost

COPKELCO Unlocking Nature-Powered Success®