

Marie Sørensen, M.Sc., Ph.D.

Development Manager, Q-Interline.

Applied Chemometrics, dsk.2022

Is this familiar?

After 5 min, first try

8 hours later...

How hard should we try?

- A fair question is: "what is good analyzer performance?"
 - When the model can fulfil it's purpose and predict product and/or process quality with acceptable performance to support the business case
 - When the application is <u>stable</u> and will not easily be disturbed by external factors - <u>error source contributions are known</u>
 - When the optimal, best agreement has been obtained, with low SEP and Bias for multiple independent validation sets
- "superb" vs. "as good as it gets" vs . "good enough"

Budget

Error Budget

"An error budget is a way of <u>estimating</u> the <u>potential</u> performance of an analytical system"

Propagation of errors in sampling

Figure 3. A minimum sampling competence encompasses FSP, TOS' paradigm of sampling correctness, five sampling errors (CSE/ISE) and four Sampling Unit Operations (SUO).

Ref.:

- DS 3077 Representative sampling – Horizontal standard
- Esbensen K. & Petersen, L. J. (2013), TOS Forum, Vol. 1, Iss. 1

$$S_x = \sqrt{\sum S_i^2}$$

Propagation of errors in the "error budget"

Unknown sample
$$S^2$$
 + Model (moisture) = 4.8 %

$$SEP \approx \sqrt{a^2 + b^2 + c^2}$$

a: Instrument measurement error

b: Reference method error

c: Combined effects of sampling errors

Error budget example

- For dry-matter in a powder.
 - Typical Instrument repeatability = 0.05%
 - Typical reference method repeatability (Drying oven) = 0.15%.
 - Expectations to application without sampling errors contribution:

$$SEP \approx \sqrt{0.05^2 + 0.152^2} = 0.160 \%$$

- The sampling errors contribution constitutes the missing link between the sample extracted and the sample seen by the analyzer and reference method
 - Often in the range of 0.25% for moisture.
 - Expectations to the application with sampling errors:

$$SEP \approx \sqrt{0.05^2 + 0.152^2 + 0.25^2} = 0.30\%$$

- Unfortunately much larger but will be closer to reality
- To get "best estimates" perform a sampling replication study

Error budget estimates

- Replication studies will reveal the contribution of individual error sources
 - "What can be done once, can also be repeated"

Relative Sampling Variability:

$$RSV = \frac{Std.dev.}{Average} \times 100$$

- SEP should be compared to the error budget calculations
 - If comparable, the application is in control
 - If not, SEP can be improved address each of the contributions to the error budget individually .

Instrument measurement errors

Sampling effects during spectrum acquisition

- The aim is to acquire a spectrum that represents the entire analytical sample well (surface/volume)
- The principles of TOS applies to spectral collection as well:
 - All particles in the sample must ideally have the same probability to influence the composite spectrum
 - Apply "composite sampling" spinning methods enable acquisition of new sample surface during analysis
 - Spinning of bottle enables mixing of sample i.e. reduces grouping and segregation errors
 - Avoid sampling errors as segregation, sedimentation, drying, temperature-, particle size-, surface effects etc.

Application Performance Validation in AnalyticTrust

"Make it easy to do things right"

- The software support a workflow to acquire replicate measurements
 - "Repeat measurement of the sample" → Instrument repeatability test
 - "Repeat measurement of another subsample" → sampling repeatability test

Example of data

- Dry-matter in a semi-liquid product
- Agreement and repeatability test as part of the QA plan Application Performance Validation
- > 20 samples in 6 months with instrument and sampling replicates

Sampling effects in-line

- All processes shows heterogeneity
 - "Compositional Heterogeneity" all parts are not evenly present at all spots in cross-section
 - "Distributed Heterogeneity" the concentration of all parts are not the same at all times.
- We should avoid incorrect sampling errors by being careful when placing probes - and <u>sample</u> <u>extraction ports</u>.
- Challenge: The probe will never see 100% the same sample as will emerge from the extraction point – a potential missing link between physical sample and the time/volume observed by the inline NIR system
 - Create the extracted sample by composite sampling
 - One or few samples are not likely to give full insight in the process.
 - Do sampling when the process is relatively "stable"

Figure 3 Simplified illustration of process variation and heterogeneity

Figure 4 120 sec of a process with relative short term variation of +/- 15%

"Make it easy to do things right"

- Challenge the process variation: In-line software that guides the operator for sampling when the process is relatively "stable"
 - Relative Sampling Deviation (Rsd)

- Colour indication of process variation:
 - Green: Small variation
 - Yellow: Medium variation
 - Red: Large variation

In summary...

"Boys and girls: Remember the Error Budget!"

Quote by Anders Larsen (1970 - 2022) Innovator and founder of Q-Interline

Thank you

