Automatic Passenger Counting System in S-trains – how?

Fri Interne

0

11

Ny Ellebjerg

DSB

dsk.2022 Maja Kamstrup-Nielsen – majka@dsb.dk 03-11-2022

AGENDA

- 1. Why do we count passengers?
- 2. Data collection: How do we count?
- 3. Data handling: How are data handled and processed?
- 4. Data use: Two examples

3 dsk.2022

Why count passengers?

- → Development of number of journeys
- → Determining travel patterns
- → Estimation of loss of journeys due to incidents
- → Distribution of rolling stock
- → Contractual obligations to the ministry of transportation
- → Revenue sharing in the capital area
- → Budgets and accounting
- → ...

Data collection: How do we count?

S-train chart

→135 trains→86 stations

→8 routes

The counting system APS

- → APS: Automatic Passenger counting System
- → The system applies data from a number of different sources of varying quality
- → Output is a modelled number of journeys and their travel pattern

Input data – multivariate?

 Weights All litra units are weighed after departure from a station, when the velocity reaches 5 km/h The weighing cell is part of the braking system The weighing cell has an accuracy that makes it possible to compute the number of journeys 	 IR countings Installed in 16 litra units (12% of all litra units) IR counting bars in all door ways Register all passengers boarding and alighting the train
 Manual countings Converting weights to passengers The weighings include luggage, animals, clothes etc. Few of the departures are counted manually, but are essential for converting weights to a veritable number of passengers In case of extensive replcement busses, the number of passengers are counted manually here as well 	 Additional data Origin-Destination (OD)-matrix - basic travel pattern Planned and actual train schedule (incl. replacements busses) Rolling stock schedule - which litra units run on which train numbers Litra unit coupling - which litra units are coupled to each other Positioning - where are the trains located

Data handling: How are data handled and processed?

The overall data process

Data processing

- → The route selection model is applied on the initial OD matrix, which is spread out on the actual time table of the day
 - Determines which travel route the passengers are most likely to choose -
 - Initial result: A modelled number of passengers between all stations -
- > Then each element is adjusted using the weights and counts the MPME adjustment

→ The MPME adjustment can be expressed as:

$$T_{(E)ija} = \frac{V_a}{T_a} \cdot T_{ij}$$

- $\mathsf{T}_{(E)ija}$ is the expected number of passengers from stations i to j on edge a V_a is the weight on edge a
- T_a is the modelled number of passengers on edge a
- T_{ii} is the initial number of passengers from stations *i* to *j*

Data processing – a simple example

$$\begin{array}{l} \hline \text{MPME adjustment:} \\ T_{A \to B} &= \frac{42}{55} \cdot 13 = 9,93 \cong 10 \\ T_{A \to C} &= \frac{1}{2} \cdot \left(\frac{42}{55} \cdot 42 + \frac{32}{52} \cdot 42\right) = 28,96 \cong 29 \\ T_{B \to C} &= \frac{32}{52} \cdot 10 = 6,15 \cong 6 \end{array}$$

Results:

How many passengers are sitting in the train between stations?

A and B: 10 + 29 = **39**

B and C: 29 + 6 = **35**

Total number of passengers?

All "between stations" are summed: 10 + 29 + 6 = 45

About the MPME method

- → The idea is to adjust the number of passengers between all pairs of stations (ODs)
 - Approximately 120.000 OD combinations in the initial OD matrix
- → The adjustment is performed based on weights and IR countings
 - On a single day the S-trains are weighed app. 25.000 times
- The solution of the method approaches the minimized squared deviation between the measured and modelled traffic:

$$min\left[\sum_{a}\frac{(T_a - V_a)^2}{V_a}\right]$$

Data use: What can we use data for?

An example

An example – watch out!

Gasoline prices found on <u>Benzinpriser udvikling \rightarrow Se prisudviklingen siden 1993 | OK</u>

Aspects to take into account

- ➔ Infrastructual work
- → Gasoline prices
- Restrictions during COVID-19 safe distances, use of mouth guard in public transport
- → Strike of front personnel
- → Opening of the Metro City Ring
- ➔ Increased possibilities of working from home
- → Tour de France Grand Départ au Copenhauge
- → IT breakdown
- → ...

