

Model augmentation as an alternative to calibration transfer - a practical approach for industrial installations

> Presented at dsk.2022 4th November 2022 (Middelfart, Denmark) Kiran Haroon, Process Analytical Chemist kiran.haroon@keit.co.uk

What is the IRmadillo?

Simple, contact-sensing probe

Install the probe directly on-line or in-line into your process and the diamond window makes contact with the process fluid to start measuring instantly

Robust, rugged and reliable

Using a 'fixed-mirror' design, the IRmadillo was built to perform in harsh plant conditions and explosive atmospheres.

Mid-infrared based technology

MIR has significantly more information than NIR – this gives much better performance on most applications

Easy to install

The probe can be installed directly into the process – either with a welded flange, compression seal, Ingold port or optional flow cells

Communicates directly with your DCS

The external controller can use either Modbus or OPC-UA to input measurements directly into the DCS, SCADA or PLC

Design decisions on the IRmadillo

Field installation options

8 November 2022

Calibration Transfer

What is Calibration Transfer? "A series of analytical approaches or chemometric techniques used to attempt to apply a single spectral database, and the calibration model developed using that database, for two or more instruments, with statistically retained accuracy and precision"
 Workman JJ Jr. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl Spectrosc. 2018

Calibration Transfer

What is Calibration Transfer? "A series of analytical approaches or chemometric techniques used to attempt to apply a single spectral database, and the calibration model developed using that database, for two or more instruments, with statistically retained accuracy and precision"
 Workman JJ Jr. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl Spectrosc. 2018

How is it currently performed?

• Direct standardization (DS), piecewise direct standardization (PDS), spectral space transformation (SST)...

Calibration Transfer

What is Calibration Transfer?	• "A series of analytical approaches or chemometric techniques used to attempt to apply a single spectral database, and the calibration model developed using that database, for two or more instruments, with statistically retained accuracy and precision" Workman JJ Jr. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl Spectrosc. 2018
How is it currently performed?	 Direct standardization (DS), piecewise direct standardization (PDS), spectral space transformation (SST)
Main Problem	 Requires standard sample measurements on both instruments Not always possible due to geographical location of installs and sample degradation

1. Bioethanol Fermentations

Bioethanol Fermentations

- Typically measure in the fermentation tank
- Chemicals of interest during fermentation:
 - Ethanol (desired product)
 - Sugars (DP1, DP2, DP3, DP4)
 - Impurities (lactic/acetic acid, glycerol)

How can we efficiently calibrate for multiple installs with the same application?

Starter Calibrations

Models built for a certain application using one or more IRmadillos developed using lab and/or process data

Ship out IRmadillos with pre-loaded starter calibrations

Provide customers with a visual representation of how their process is trending

Bioethanol Fermentation – Starter Calibration

Bioethanol Fermentation - Augmented Calibrations

8 November 2022

Bioethanol Fermentation - Augmented Calibrations

8 November 2022

2. Bioethanol to Vodka

2. Bioethanol to Vodka

Ethanol fermentations for different industries are essentially the same from a process perspective – the difference is in the feedstock.

Corn \rightarrow Bioethanol

Wheat \rightarrow Vodka

Can we use the same calibrations across industries using the augmentation approach?

2. Bioethanol to Vodka

Can we use the same calibrations across industries using the augmentation approach?

3. Brewing Mash

Beer can be produced from a variety of different grains including malt, sorghum and wheat where the choice of grains used typically depends on geography.

Is it better to have a single global model or multiple individual grain models?

Beer can be produced from a variety of different grains including malt, sorghum and wheat where the choice of grains used typically depends on geography.

Is it better to have a single global model or multiple individual grain models?

Depends on the application!

To be continued...

